當前位置:才華齋>範例>校園>

高中化學必備的基本知識歸納

校園 閱讀(2.38W)

有不少學生埋怨高中的化學難學,考試成績都是不理想。想要學好,首先就要將基礎打好,把最基本的知識點先鞏固好。下面是本站小編為大家整理的高中化學重點知識,希望對大家有用!

高中化學必備的基本知識歸納

  高中化學理論知識

一、物質結構理論

1.用原子半徑、元素化合價週期性變化比較不同元素原子或離子半徑大小

2.用同週期、同主族元素金屬性和非金屬性遞變規律判斷具體物質的酸鹼性強弱或氣態氫化物的穩定性或對應離子的氧化性和還原性的強弱。

3.運用週期表中元素“位--構--性”間的關係推導元素。

4.應用元素週期律、兩性氧化物、兩性氫氧化物進行相關計算或綜合運用,對元素推斷的框圖題要給予足夠的重視。

5.晶體結構理論

⑴晶體的空間結構:對代表物質的晶體結構要仔細分析、理解。在高中階段所涉及的晶體結構就源於課本的就幾種,大學聯考在出題時,以此為藍本,考查與這些晶體結構相似的沒有學過的其它晶體的結構。

⑵晶體結構對其性質的影響:物質的熔、沸點高低規律比較。

⑶晶體型別的判斷及晶胞計算。

二 、化學反應速率和化學平衡理論

化學反應速率和化學平衡是中學化學重要基本理論,也是化工生產技術的重要理論基礎,是大學聯考的熱點和難點。考查主要集中在:掌握反應速率的表示方法和計算,理解外界條件(濃度、壓強、溫度、催化劑等)對反應速率的影響。考點主要集中在同一反應用不同物質表示的速率關係,外界條件對反應速率的影響等。化學平衡的標誌和建立途徑,外界條件對化學平衡的影響。運用平衡移動原理判斷平衡移動方向,及各物質的物理量的變化與物態的關係,等效平衡等。

1.可逆反應達到化學平衡狀態的標誌及化學平衡的移動

主要包括:可逆反應達到平衡時的特徵,條件改變時平衡移動知識以及移動過程中某些物理量的變化情況,勒夏特列原理的應用。

三、電解質理論

電解質理論重點考查弱電解質電離平衡的建立,電離方程式的書寫,外界條件對電離平衡的影響,酸鹼中和反應中有關弱電解質參與的計算和酸鹼中和滴定實驗原理,水的離子積常數及溶液中水電離的氫離子濃度的有關計算和pH的計算,溶液酸鹼性的判斷,不同電解質溶液中水的電離程度大小的比較,鹽類的水解原理及應用,離子共存、離子濃度大小比較,電解質理論與生物學科之間的滲透等。重要知識點有:

1.弱電解質的電離平衡及影響因素,水的電離和溶液的pH及計算。

2.鹽類的水解及其應用,特別是離子濃度大小比較、離子共存問題。

四、電化學理論

電化學理論包括原電池理論和電解理論。原電池理論的主要內容:判斷某裝置是否是原電池並判斷原電池的正負極、書寫電極反應式及總反應式;原電池工作時電解質溶液及兩極區溶液的pH的變化以及電池工作時溶液中離子的運動方向;新型化學電源的工作原理。特別注意的是大學聯考關注的日常生活、新技術內容有很多與原電池相關,還要注意這部分內容的命題往往與化學實驗、元素與化合物知識、氧化還原知識伴隨在一起。同時原電池與生物、物理知識相互滲透如生物電、廢舊電池的危害、化學能與電能的轉化、電池效率等都是理綜命題的熱點之一。電解原理包括判斷電解池、電解池的陰陽極及兩極工作時的電極反應式;判斷電解池工作中和工作後溶液和兩極區溶液的pH變化;電解原理的應用及電解的有關計算。命題特點與化學其它內容綜合,電解原理與物理知識聯絡緊密,學科間綜合問題。

  高中化學必修一知識

一、矽及其化合物 Si

矽元素在地殼中的含量排第二,在自然界中沒有遊離態的矽,只有以化合態存在的矽,常見的是二氧化矽、矽酸鹽等。

矽的原子結構示意圖為,矽元素位於元素週期表第三週期第ⅣA族,矽原子最外層有4個電子,既不易失去電子又不易得到電子,主要形成四價的化合物。

1、單質矽(Si):

(1)物理性質:有金屬光澤的灰黑色固體,熔點高,硬度大。

(2)化學性質:

①常溫下化學性質不活潑,只能跟F2、HF和NaOH溶液反應。

Si+2F2=SiF4

Si+4HF=SiF4↑+2H2↑

Si+2NaOH+H2O=Na2SiO3+2H2↑

②在高溫條件下,單質矽能與O2和Cl2等非金屬單質反應。

(3)用途:太陽能電池、計算機晶片以及半導體材料等。

(4)矽的製備:工業上,用C在高溫下還原SiO2可製得粗矽。

SiO2+2C=Si(粗)+2CO↑

Si(粗)+2Cl2=SiCl4

SiCl4+2H2=Si(純)+4HCl

2、二氧化矽(SiO2):

(1)SiO2的空間結構:立體網狀結構,SiO2直接由原子構成,不存在單個SiO2分子。

(2)物理性質:熔點高,硬度大,不溶於水。

(3)化學性質:SiO2常溫下化學性質很不活潑,不與水、酸反應(氫氟酸除外),能與強鹼溶液、氫氟酸反應,高溫條件下可以與鹼性氧化物反應:

①與強鹼反應:SiO2+2NaOH=Na2SiO3+H2O(生成的矽酸鈉具有粘性,所以不能用帶磨口玻璃塞試劑瓶存放NaOH溶液和Na2SiO3溶液,避免Na2SiO3將瓶塞和試劑瓶粘住,打不開,應用橡皮塞)。

②與氫氟酸反應[SiO2的特性]:SiO2+4HF=SiF4↑+2H2O(利用此反應,氫氟酸能雕刻玻璃;氫氟酸不能用玻璃試劑瓶存放,應用塑料瓶)。

③高溫下與鹼性氧化物反應:SiO2+CaOCaSiO3

(4)用途:光導纖維、瑪瑙飾物、石英坩堝、水晶鏡片、石英鐘、儀器軸承、玻璃和建築材料等。

3、矽酸(H2SiO3):

(1)物理性質:不溶於水的白色膠狀物,能形成矽膠,吸附水分能力強。

(2)化學性質:H2SiO3是一種弱酸,酸性比碳酸還要弱,其酸酐為SiO2,但SiO2不溶於水,故不能直接由SiO2溶於水製得,而用可溶性矽酸鹽與酸反應制取:(強酸制弱酸原理)

Na2SiO3+2HCl=2NaCl+H2SiO3↓

Na2SiO3+CO2+H2O=H2SiO3↓+Na2CO3(此方程式證明酸性:H2SiO3

(3)用途:矽膠作乾燥劑、催化劑的載體。

4、矽酸鹽

矽酸鹽:矽酸鹽是由矽、氧、金屬元素組成的化合物的總稱。矽酸鹽種類很多,大多數難溶於水,最常見的可溶性矽酸鹽是Na2SiO3,Na2SiO3的水溶液俗稱水玻璃,又稱泡花鹼,是一種無色粘稠的液體,可以作黏膠劑和木材防火劑。矽酸鈉水溶液久置在空氣中容易變質:

Na2SiO3+CO2+H2O=Na2CO3+H2SiO3↓(有白色沉澱生成)

傳統矽酸鹽工業三大產品有:玻璃、陶瓷、水泥。

矽酸鹽由於組成比較複雜,常用氧化物的形式表示:活潑金屬氧化物→較活潑金屬氧化物→二氧化矽→水。氧化物前係數配置原則:除氧元素外,其他元素按配置前後原子個數守恆原則配置係數。

矽酸鈉:Na2SiO3 Na2O·SiO2

矽酸鈣:CaSiO3 CaO·SiO2

高嶺石:Al2(Si2O5)(OH)4 Al2O3·2SiO2·2H2O

正長石:KAlSiO3不能寫成 K2O· Al2O3·3SiO2,應寫成K2O·Al2O3·6SiO2

  高中選修三化學知識

1、金屬鍵的強弱和金屬晶體熔沸點的變化規律:陽離子所帶電荷越多、半徑越小,金屬鍵越強,熔沸點越高,如熔點:NaNa>K>Rb>Cs。金屬鍵的強弱可以用金屬的原子

2、簡單配合物的成鍵情況(配合物的空間構型和中心原子的雜化型別不作要求)

概念

表示

條件

共用電子對由一個原子單方向提供給另一原子共用所形成的共價鍵。

A:電子對給予體

B:電子對接受體

其中一個原子必須提供孤對電子,另一原子必須能接受孤對電子的軌道。

(1)配位鍵:一個原子提供一對電子與另一個接受電子的原子形成的'共價鍵,即成鍵的兩個原子一方提供孤對電子,一方提供空軌道而形成的共價鍵。

(2)①配合物:由提供孤電子對的配位體與接受孤電子對的中心原子(或離子)以配位鍵形成的化合物稱配合物,又稱絡合物

②形成條件:

a.中心原子(或離子)必須存在空軌道

b.配位體具有提供孤電子對的原子

③配合物的組成

④配合物的性質:配合物具有一定的穩定性。配合物中配位鍵越強,配合物越穩定。當作為中心原子的金屬離子相同時,配合物的穩定性與配體的性質有關。

3、分子間作用力:把分子聚集在一起的作用力。分子間作用力是一種靜電作用,比化學鍵弱得多,包括範德華力和氫鍵。

範德華力一般沒有飽和性和方向性,而氫鍵則有飽和性和方向性。

4、分子晶體:分子間以分子間作用力(範德華力、氫鍵)相結合的晶體.典型的有冰、乾冰。

5、分子間作用力強弱和分子晶體熔沸點大小的判斷:組成和結構相似的物質,相對分子質量越大,分子間作用力越大,克服分子間引力使物質熔化和氣化就需要更多的能量,熔、沸點越高,但存在氫鍵時分子晶體的熔沸點往往反常地高。

6、NH3、H2O、HF中由於存在氫鍵,使得它們的沸點比同族其它元素氫化物的沸點反常地高。

影響物質的性質方面:增大溶沸點,增大溶解性

表示方法:X—H……Y(N O F) 一般都是氫化物中存在。

7、幾種比較:

(1)離子鍵、共價鍵和金屬鍵的比較

化學鍵型別

離子鍵

共價鍵

金屬鍵

概念

陰、陽離子間通過靜電作用所形成的化學鍵

原子間通過共用電子對所形成的化學鍵

金屬陽離子與自由電子通過相互作用而形成的化學鍵

成鍵微粒

陰陽離子

原子

金屬陽離子和自由電子

成鍵性質

靜電作用

共用電子對

電性作用

形成條件

活潑金屬與活潑的非金屬元素

非金屬與非金屬元素

金屬內部

例項

NaCl、MgO

HCl、H2SO4

Fe、Mg

(2)非極性鍵和極性鍵的比較

非極性鍵

極性鍵

概念

同種元素原子形成的共價鍵

不同種元素原子形成的共價鍵,共用電子對發生偏移

原子吸引電子能力

相同

不同

共用電子對

不偏向任何一方

偏向吸引電子能力強的原子

成鍵原子電性

電中性

顯電性

形成條件

由同種非金屬元素組成

由不同種非金屬元素組成

(3)物質溶沸點的比較

①不同類晶體:一般情況下,原子晶體>離子晶體>分子晶體

②同種型別晶體:構成晶體質點間的作用大,則熔沸點高,反之則小。

a.離子晶體:離子所帶的電荷數越高,離子半徑越小,則其熔沸點就越高。

b.分子晶體:對於同類分子晶體,式量越大,則熔沸點越高。

c.原子晶體:鍵長越小、鍵能越大,則熔沸點越高。

③常溫常壓下狀態

a.熔點:固態物質>液態物質