當前位置:才華齋>範例>校園>

高二數學重點複習知識點歸納5篇

校園 閱讀(1.52W)
高二數學重點複習知識點歸納5篇1

  分層抽樣

高二數學重點複習知識點歸納5篇

先將總體中的所有單位按照某種特徵或標誌(性別、年齡等)劃分成若干型別或層次,然後再在各個型別或層次中採用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最後,將這些子樣本合起來構成總體的樣本。

 兩種方法

1、先以分層變數將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

2、先以分層變數將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最後用系統抽樣的方法抽取樣本。

3、分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

 分層標準

(1)以調查所要分析和研究的主要變數或相關的變數作為分層的標準。

(2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變數作為分層變數。

(3)以那些有明顯分層區分的變數作為分層變數。

分層的比例問題

(1)按比例分層抽樣:根據各種型別或層次中的單位數目佔總體單位數目的比重來抽取子樣本的方法。

(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時採用該方法,主要是便於對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的資料資料進行加權處理,調整樣本中各層的比例,使資料恢復到總體中各層實際的比例結構。

高二數學重點複習知識點歸納5篇2

(1)定義:

對於函式y=f(x)(x∈D),把使f(x)=0成立的實數x叫做函式y=f(x)(x∈D)的零點。

(2)函式的零點與相應方程的根、函式的圖象與x軸交點間的關係:

方程f(x)=0有實數根?函式y=f(x)的圖象與x軸有交點?函式y=f(x)有零點。

(3)函式零點的判定(零點存在性定理):

如果函式y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)·f(b)<0,那麼,函式y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

二二次函式y=ax2+bx+c(a>0)的圖象與零點的關係

三二分法

對於在區間[a,b]上連續不斷且f(a)·f(b)<0的函式y=f(x),通過不斷地把函式f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

1、函式的零點不是點:

函式y=f(x)的零點就是方程f(x)=0的實數根,也就是函式y=f(x)的圖象與x軸交點的橫座標,所以函式的零點是一個數,而不是一個點。在寫函式零點時,所寫的一定是一個數字,而不是一個座標。

2、對函式零點存在的判斷中,必須強調:

(1)、f(x)在[a,b]上連續;

(2)、f(a)·f(b)<0;

(3)、在(a,b)記憶體在零點。

這是零點存在的一個充分條件,但不必要。

3、對於定義域內連續不斷的函式,其相鄰兩個零點之間的所有函式值保持同號。

利用函式零點的存在性定理判斷零點所在的區間時,首先看函式y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0。若有,則函式y=f(x)在區間(a,b)內必有零點。

四判斷函式零點個數的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

2、零點存在性定理法:

利用定理不僅要判斷函式在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函式的圖象與性質(如單調性、奇偶性、週期性、對稱性)才能確定函式有多少個零點。

3、數形結合法:

轉化為兩個函式的圖象的交點個數問題。先畫出兩個函式的圖象,看其交點的個數,其中交點的個數,就是函式零點的個數。

已知函式有零點(方程有根)求引數取值常用的方法

1、直接法:

直接根據題設條件構建關於引數的不等式,再通過解不等式確定引數範圍。

2、分離引數法:

先將引數分離,轉化成求函式值域問題加以解決。

3、數形結合法:

先對解析式變形,在同一平面直角座標系中,畫出函式的圖象,然後數形結合求解。

高二數學重點複習知識點歸納5篇3

  一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:並(和)、交(積)、差;注意差A—B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結合律、分配律、德莫根律。

(3)事件的'五種關係:包含、相等、互斥(互不相容)、對立、相互獨立。

 二、概率定義

(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的概率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的對映。

 三、概率性質與公式

(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A—B)=P(A)—P(AB),特別地,如果B包含於A,則P(A—B)=P(A)—P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,...,An下發生,則用全概率公式求B發生的概率;如果事件B已經發生,要求它是由Aj引起的概率,則用貝葉斯公式。

(5)二項概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。當一個問題可以看成n重貝努力試驗(三個條件:n次重複,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項概率公式。

高二數學重點複習知識點歸納5篇4

1、解不等式問題的分類

(1)解一元一次不等式。

(2)解一元二次不等式。

(3)可以化為一元一次或一元二次不等式的不等式。

①解一元高次不等式;

②解分式不等式;

③解無理不等式;

④解指數不等式;

⑤解對數不等式;

⑥解帶絕對值的不等式;

⑦解不等式組。

2、解不等式時應特別注意下列幾點:

(1)正確應用不等式的基本性質。

(2)正確應用冪函式、指數函式和對數函式的增、減性。

(3)注意代數式中未知數的取值範圍。

3、不等式的同解性

(5)|f(x)|

(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<—g(x)(其中g(x)≥0)同解;②與g(x)<0同解。

(9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0ag(x)與f(x)

高二數學重點複習知識點歸納5篇5

數列定義:

如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。

前n項和公式為:Sn=na1+n(n—1)d/2或Sn=n(a1+an)/2(2)

以上n均屬於正整數。

解釋說明:

從(1)式可以看出,an是n的一次函式(d≠0)或常數函式(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函式(d≠0)或一次函式(d=0,a1≠0),且常數項為0。

在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。

且任意兩項am,an的關係為:an=am+(n—m)d

它可以看作等差數列廣義的通項公式。

推論公式:

從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈{1,2,…,n}

若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq,Sm—1=(2n—1)an,S2n+1=(2n+1)an+1,Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…或等差數列,等等。

基本公式:

和=(首項+末項)×項數÷2

項數=(末項—首項)÷公差+1

首項=2和÷項數—末項

末項=2和÷項數—首項

末項=首項+(項數—1)×公差