當前位置:才華齋>範例>校園>

高二數學知識點整理

校園 閱讀(2.5W)

數學學習重在平日功夫,不適於突擊複習。平日學習最重要的是 課堂 40 分鐘,高二數學是學習關鍵的一年,分享了高二數學知識點,歡迎大家收藏!

高二數學知識點整理

一、對映與函式:

(1)對映的概念: (2)一一對映:(3)函式的概念:

二、函式的三要素:

相同函式的判斷方法:①對應法則 ;②定義域 (兩點必須同時具備)

(1)函式解析式的求法:

①定義法(拼湊):②換元法:③待定係數法:④賦值法:

(2)函式定義域的求法:

①含參問題的定義域要分類討論;

②對於實際問題,在求出函式解析式後;必須求出其定義域,此時的定義域要根據實際意義來確定。

(3)函式值域的求法:

①配方法:轉化為二次函式,利用二次函式的特徵來求值;常轉化為型如: 的形式;

②逆求法(反求法):通過反解,用 來表示 ,再由 的取值範圍,通過解不等式,得出 的取值範圍;常用來解,型如:

④換元法:通過變數代換轉化為能求值域的函式,化歸思想;

⑤三角有界法:轉化為只含正弦、餘弦的函式,運用三角函式有界性來求值域;

⑥基本不等式法:轉化成型如: ,利用平均值不等式公式來求值域;

⑦單調性法:函式為單調函式,可根據函式的單調性求值域。

⑧數形結合:根據函式的幾何圖形,利用數型結合的方法來求值域。

三、函式的性質:

函式的單調性、奇偶性、週期性

單調性:定義:注意定義是相對與某個具體的區間而言。

判定方法有:定義法(作差比較和作商比較)

導數法(適用於多項式函式)

複合函式法和影象法。

應用:比較大小,證明不等式,解不等式。

奇偶性:定義:注意區間是否關於原點對稱,比較f(x) 與f(-x)的關係。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函式;

f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函式。

判別方法:定義法, 影象法 ,複合函式法

應用:把函式值進行轉化求解。

週期性:定義:若函式f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函式f(x)的週期。

其他:若函式f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函式f(x)的週期.

應用:求函式值和某個區間上的函式解析式。

四、圖形變換

函式影象變換:(重點)要求掌握常見基本函式的影象,掌握函式影象變換的一般規律。

常見影象變化規律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯絡起來思考)

平移變換 y=f(x)→y=f(x+a),y=f(x)+b

注意:(ⅰ)有係數,要先提取係數。如:把函式y=f(2x)經過 平移得到函式y=f(2x+4)的圖象。

(ⅱ)會結合向量的平移,理解按照向量 (m,n)平移的意義。

對稱變換 y=f(x)→y=f(-x),關於y軸對稱

y=f(x)→y=-f(x) ,關於x軸對稱

y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關於x軸對稱

y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然後將y軸右邊部分關於y軸對稱。(注意:它是一個偶函式)

伸縮變換:y=f(x)→y=f(ωx),

y=f(x)→y=Af(ωx+φ)具體參照三角函式的圖象變換。

一個重要結論:若f(a-x)=f(a+x),則函式y=f(x)的影象關於直線x=a對稱;

六、集合與簡易邏輯:

一、理解集合中的有關概念

(1)集合中元素的特徵: 確定性 , 互異性 , 無序性 。

(2)集合與元素的關係用符號=表示。

(3)常用數集的符號表示:自然數集 ;正整數集 ;整數集 ;有理數集 、實數集 。

(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。

(5)空集是指不含任何元素的集合。

空集是任何集合的子集,是任何非空集合的真子集。

五、反函式:

(1)定義:

(2)函式存在反函式的條件:

(3)互為反函式的定義域與值域的關係:

(4)求反函式的步驟:①將 看成關於 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函式的定義域(即 的值域)。

(5)互為反函式的圖象間的關係:

(6)原函式與反函式具有相同的單調性;

(7)原函式為奇函式,則其反函式仍為奇函式;原函式為偶函式,它一定不存在反函式。

七、常用的初等函式:

(1)一元一次函式:

(2)一元二次函式:

一般式

兩點式

頂點式

二次函式求最值問題:首先要採用配方法,化為一般式,

有三個型別題型:

(1)頂點固定,區間也固定。如:

(2)頂點含引數(即頂點變動),區間固定,這時要討論頂點橫座標何時在區間之內,何時在區間之外。

(3)頂點固定,區間變動,這時要討論區間中的引數.

等價命題 在區間 上有兩根 在區間 上有兩根 在區間 或 上有一根

注意:若在閉區間 討論方程 有實數解的情況,可先利用在開區間 上實根分佈的情況,得出結果,在令 和 檢查端點的情況。

(3)反比例函式:

(4)指數函式:

指數函式:y= (a>o,a≠1),圖象恆過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函式圖象的簡圖。 _extended="true"

(5)對數函式:

對數函式:y= (a>o,a≠1) 圖象恆過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0<a<1兩種情況進行討論,要能夠畫出函式圖象的簡圖。 _extended="true"

注意:

(1)比較兩個指數或對數的大小的基本方法是構造相應的指數或對數函式,若底數不相同時轉化為同底數的指數或對數,還要注意與1比較或與0比較。

八、導 數

1.求導法則:

(c)/=0 這裡c是常數。即常數的導數值為0。

(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)

2.導數的幾何物理意義:

k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。

V=s/(t) 表示即時速度。a=v/(t) 表示加速度。

3.導數的應用:

①求切線的斜率。

②導數與函式的單調性的關係

已知 (1)分析 的定義域;(2)求導數 (3)解不等式 ,解集在定義域內的部分為增區間(4)解不等式 ,解集在定義域內的部分為減區間。

我們在應用導數判斷函式的單調性時一定要搞清以下三個關係,才能準確無誤地判斷函式的單調性。以下以增函式為例作簡單的分析,前提條件都是函式 在某個區間內可導。

③求極值、求最值。

注意:極值≠最值。函式f(x)在區間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。

f/(x0)=0不能得到當x=x0時,函式有極值。

但是,當x=x0時,函式有極值 f/(x0)=0

判斷極值,還需結合函式的單調性說明。

4.導數的常規問題:

(1)刻畫函式(比初等方法精確細微);

(2)同幾何中切線聯絡(導數方法可用於研究平面曲線的切線);

(3)應用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難型別。

2.關於函式特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

3.導數與解析幾何或函式圖象的混合問題是一種重要型別,也是大學聯考會考察綜合能力的一個方向,應引起注意。

九、不等式

一、不等式的基本性質:

注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用於不成立的命題。

(2)注意課本上的幾個性質,另外需要特別注意:

①若ab>0,則 。即不等式兩邊同號時,不等式兩邊取倒數,不等號方向要改變。

②如果對不等式兩邊同時乘以一個代數式,要注意它的正負號,如果正負號未定,要注意分類討論。

③圖象法:利用有關函式的圖象(指數函式、對數函式、二次函式、三角函式的圖象),直接比較大小。

④中介值法:先把要比較的代數式與“0”比,與“1”比,然後再比較它們的大小

二、均值不等式:兩個數的算術平均數不小於它們的幾何平均數。

基本應用:①放縮,變形;

②求函式最值:注意:①一正二定三相等;②積定和最小,和定積最大。

常用的方法為:拆、湊、平方;

三、絕對值不等式:

注意:上述等號“=”成立的條件;

四、常用的基本不等式:

五、證明不等式常用方法:

(1)比較法:作差比較:

作差比較的步驟:

⑴作差:對要比較大小的兩個數(或式)作差。

⑵變形:對差進行因式分解或配方成幾個數(或式)的完全平方和。

⑶判斷差的符號:結合變形的結果及題設條件判斷差的符號。

注意:若兩個正數作差比較有困難,可以通過它們的平方差來比較大小。

(2)綜合法:由因導果。

(3)分析法:執果索因。基本步驟:要證……只需證……,只需證……

(4)反證法:正難則反。

(5)放縮法:將不等式一側適當的放大或縮小以達證題目的。

放縮法的方法有:

⑴新增或捨去一些項,

⑵將分子或分母放大(或縮小)

⑶利用基本不等式,

(6)換元法:換元的目的就是減少不等式中變數,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數換元。

(7)構造法:通過建構函式、方程、數列、向量或不等式來證明不等式;

十、不等式的解法:

(1)一元二次不等式: 一元二次不等式二次項係數小於零的,同解變形為二次項係數大於零;注:要對 進行討論:

(2)絕對值不等式:若 ,則 ; ;

注意:

(1)解有關絕對值的問題,考慮去絕對值,去絕對值的方法有:

⑴對絕對值內的部分按大於、等於、小於零進行討論去絕對值;

(2).通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負值。

(3).含有多個絕對值符號的不等式可用“按零點分割槽間討論”的方法來解。

(4)分式不等式的解法:通解變形為整式不等式;

(5)不等式組的解法:分別求出不等式組中,每個不等式的解集,然後求其交集,即是這個不等式組的解集,在求交集中,通常把每個不等式的解集畫在同一條數軸上,取它們的公共部分。

(6)解含有引數的不等式:

解含引數的不等式時,首先應注意考察是否需要進行分類討論.如果遇到下述情況則一般需要討論:

①不等式兩端乘除一個含引數的式子時,則需討論這個式子的正、負、零性.

②在求解過程中,需要使用指數函式、對數函式的單調性時,則需對它們的底數進行討論.

③在解含有字母的一元二次不等式時,需要考慮相應的二次函式的開口方向,對應的一元二次方程根的狀況(有時要分析△),比較兩個根的大小,設根為 (或更多)但含引數,要討論。

十一、數列

本章是大學聯考命題的主體內容之一,應切實進行全面、深入地複習,並在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是大學聯考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善於使用各種數學思想解答數列題,是我們複習應達到的目標. ①函式思想:等差等比數列的通項公式求和公式都可以看作是 的函式,所以等差等比數列的某些問題可以化為函式問題求解.

②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;

③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整

體思想求解.

(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.

一、基本概念:

1、 數列的`定義及表示方法:

2、 數列的項與項數:

3、 有窮數列與無窮數列:

4、 遞增(減)、擺動、迴圈數列:

5、 數列的通項公式an:

6、 數列的前n項和公式Sn:

7、 等差數列、公差d、等差數列的結構:

8、 等比數列、公比q、等比數列的結構:

二、基本公式:

9、一般數列的通項an與前n項和Sn的關係:an=

10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。

11、等差數列的前n項和公式:Sn= Sn= Sn=

當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。

12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k

(其中a1為首項、ak為已知的第k項,an≠0)

13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);

當q≠1時,Sn= Sn=

三、有關等差、等比數列的結論

14、等差數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數列。

15、等差數列中,若m+n=p+q,則

16、等比數列中,若m+n=p+q,則

17、等比數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數列。

18、兩個等差數列與的和差的數列、仍為等差數列。

19、兩個等比數列與的積、商、倒陣列成的數列

、 、 仍為等比數列。

20、等差數列的任意等距離的項構成的數列仍為等差數列。

21、等比數列的任意等距離的項構成的數列仍為等比數列。

22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d

23、三個數成等比的設法:a/q,a,aq;

四個數成等比的錯誤設法:a/q3,a/q,aq,aq3

24、為等差數列,則 (c>0)是等比數列。

25、(bn>0)是等比數列,則 (c>0且c 1) 是等差數列。

四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。

26、分組法求數列的和:如an=2n+3n

27、錯位相減法求和:如an=(2n-1)2n

28、裂項法求和:如an=1/n(n+1)

29、倒序相加法求和:

30、求數列的最大、最小項的方法:

① an+1-an=…… 如an= -2n2+29n-3

② an=f(n) 研究函式f(n)的增減性

31、在等差數列 中,有關Sn 的最值問題——常用鄰項變號法求解:

(1)當 >0,d<0時,滿足 的項數m使得 取最大值.

(2)當<0,d>0時,滿足 的項數m使得 取最小值。

在解含絕對值的數列最值問題時,注意轉化思想的應用。

十二、平面向量

1.基本概念:

向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。

2. 加法與減法的代數運算:

(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

向量加法有如下規律: + = + (交換律); +( +c)=( + )+c (結合律);

3.實數與向量的積:實數 與向量 的積是一個向量。

(1)| |=| |·| |;

(2) 當 a>0時, 與a的方向相同;當a<0時, 與a的方向相反;當 a=0時,a=0.

兩個向量共線的充要條件:

(1) 向量b與非零向量 共線的充要條件是有且僅有一個實數 ,使得b= .

(2) 若 =( ),b=( )則 ‖b .

平面向量基本定理:

若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量 ,有且只有一對實數 , ,使得 = e1+ e2.

4.P分有向線段 所成的比:

設P1、P2是直線 上兩個點,點P是 上不同於P1、P2的任意一點,則存在一個實數 使 = , 叫做點P分有向線段 所成的比。

當點P線上段 上時, >0;當點P線上段 或 的延長線上時, <0;

分點座標公式:若 = ; 的座標分別為( ),( ),( );則 ( ≠-1), 中點座標公式: .

5. 向量的數量積:

(1).向量的夾角:

已知兩個非零向量 與b,作 = , =b,則∠AOB= ( )叫做向量 與b的夾角。

(2).兩個向量的數量積:

已知兩個非零向量 與b,它們的夾角為 ,則 ·b=| |·|b|cos .

其中|b|cos 稱為向量b在 方向上的投影.

(3).向量的數量積的性質:

若 =( ),b=( )則e· = ·e=| |cos (e為單位向量);

⊥b ·b=0 ( ,b為非零向量);| |= ;

cos = = .

(4) .向量的數量積的運算律:

·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.

6.主要思想與方法:

本章主要樹立數形轉化和結合的觀點,以數代形,以形觀數,用代數的運算處理幾何問題,特別是處理向量的相關位置關係,正確運用共線向量和平面向量的基本定理,計算向量的模、兩點的距離、向量的夾角,判斷兩向量是否垂直等。由於向量是一新的工具,它往往會與三角函式、數列、不等式、解幾等結合起來進行綜合考查,是知識的交匯點。

十三、立體幾何

1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。

能夠用斜二測法作圖。

2.空間兩條直線的位置關係:平行、相交、異面的概念;

會求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。

3.直線與平面

①位置關係:平行、直線在平面內、直線與平面相交。

②直線與平面平行的判斷方法及性質,判定定理是證明平行問題的依據。

③直線與平面垂直的證明方法有哪些?

④直線與平面所成的角:關鍵是找它在平面內的射影,範圍是

⑤三垂線定理及其逆定理:每年大學聯考試題都要考查這個定理. 三垂線定理及其逆定理主要用於證明垂直關係與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點到直線的垂線.

4.平面與平面

(1)位置關係:平行、相交,(垂直是相交的一種特殊情況)

(2)掌握平面與平面平行的證明方法和性質。

(3)掌握平面與平面垂直的證明方法和性質定理。尤其是已知兩平面垂直,一般是依據性質定理,可以證明線面垂直。

(4)兩平面間的距離問題→點到面的距離問題→

(5)二面角。二面角的平面交的作法及求法:

①定義法,一般要利用圖形的對稱性;一般在計算時要解斜三角形;

②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計算時要解一個直角三角形。

③射影面積法,一般是二面交的兩個面只有一個公共點,兩個面的交線不容易找到時用此法