當前位置:才華齋>範例>校園>

高三物理必考知識點梳理歸納最新5篇精選

校園 閱讀(2.82W)
高三物理必考知識點梳理歸納最新5篇精選1

(1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;

高三物理必考知識點梳理歸納最新5篇精選

(2)做勻速圓周運動的物體,其向心力等於合力,並且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。

3)萬有引力

1.開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:週期,K:常量(與行星質量無關,取決於中心天體的質量)}

2.萬有引力定律:F=Gm1m2/r2(G=6.67×10-11N?m2/kg2,方向在它們的連線上)

3.天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天體半徑(m),M:天體質量(kg)}

4.衛星繞行速度、角速度、週期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步衛星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}

注:

(1)天體運動所需的向心力由萬有引力提供,F向=F萬;

(2)應用萬有引力定律可估算天體的質量密度等;

(3)地球同步衛星只能運行於赤道上空,執行週期和地球自轉週期相同;

(4)衛星軌道半徑變小時,勢能變小、動能變大、速度變大、週期變小(一同三反);

(5)地球衛星的環繞速度和最小發射速度均為7.9km/s。

高三物理必考知識點梳理歸納最新5篇精選2

光子說

⑴量子論:1900年德國物理學家普朗克提出:電磁波的發射和吸收是不連續的,而是一份一份的,每一份電磁波的能量。

⑵光子論:1905年愛因斯坦提出:空間傳播的光也是不連續的,而是一份一份的,每一份稱為一個光子,光子具有的能量與光的頻率成正比。

光的波粒二象性

光既表現出波動性,又表現出粒子性。大量光子表現出的波動性強,少量光子表現出的粒子性強;頻率高的光子表現出的粒子性強,頻率低的光子表現出的波動性強。

實物粒子也具有波動性,這種波稱為德布羅意波,也叫物質波。滿足下列關係:

從光子的概念上看,光波是一種概率波.

電子的發現和湯姆生的原子模型:

⑴電子的發現:

1897年英國物理學家湯姆生,對陰極射線進行了一系列研究,從而發現了電子。

電子的發現表明:原子存在精細結構,從而打破了原子不可再分的觀念。

⑵湯姆生的原子模型:

1903年湯姆生設想原子是一個帶電小球,它的正電荷均勻分佈在整個球體內,而帶負電的電子鑲嵌在正電荷中。

氫原子光譜

氫原子是最簡單的原子,其光譜也最簡單。

1885年,巴耳末對當時已知的,在可見光區的14條譜線作了分析,發現這些譜線的波長可以用一個公式表示:

式中R叫做裡德伯常量,這個公式成為巴爾末公式。

除了巴耳末系,後來發現的氫光譜在紅外和紫個光區的其它譜線也都滿足與巴耳末公式類似的關係式。

氫原子光譜是線狀譜,具有分立特徵,用經典的電磁理論無法解釋。

高三物理必考知識點梳理歸納最新5篇精選3

[感應電動勢的大小計算公式]

1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數,ΔΦ/Δt:磁通量的變化率}

2)E=BLV垂(切割磁感線運動){L:有效長度(m)}

3)Em=nBSω(交流發電機的感應電動勢){Em:感應電動勢峰值}

4)E=BL2ω/2(導體一端固定以ω旋轉切割){ω:角速度(rad/s),V:速度(m/s)}

2.磁通量Φ=BS{Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}

3.感應電動勢的正負極可利用感應電流方向判定{電源內部的電流方向:由負極流向正極}

4.自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感係數(H)(線圈L有鐵芯比無鐵芯時要大),

ΔI:變化電流,t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

注:

1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕

2)自感電流總是阻礙引起自感電動勢的電流的變化;(3)單位換算:1H=103mH=106μH。

4)其它相關內容:自感〔見第二冊P178〕/日光燈〔見第二冊P180〕。

高三物理必考知識點梳理歸納最新5篇精選4

1.牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種做狀態為止。

a.只有當物體所受合外力為零時,物體才能處於靜止或勻速直線運動狀態。

b.力是該變物體速度的原因。

c.力是改變物體運動狀態的原因(物體的速度不變,其運動狀態就不變)

d力是產生加速度的原因。

2.慣性:物體保持勻速直線運動或靜止狀態的性質叫慣性。

a.一切物體都有慣性。

b.慣性的大小由物體的質量決定。

c.慣性是描述物體運動狀態改變難易的物理量。

3.牛頓第二定律:物體的加速度跟所受的合外力成正比,跟物體的質量成反比,加速度的方向跟物體所受合外力的方向相同。

a.數學表示式:a=F合/m。

b.加速度隨力的產生而產生、變化而變化、消失而消失。

c.當物體所受力的方向和運動方向一致時,物體加速。當物體所受力的方向和運動方向相反時,物體減速。

d.力的單位牛頓的定義:使質量為1kg的物體產生1m/s2加速度的力,叫1N。

4.牛頓第三定律:物體間的作用力和反作用總是等大、反向、作用在同一條直線上的。

a.作用力和反作用力同時產生、同時變化、同時消失。

b.作用力和反作用力與平衡力的根本區別是作用力和反作用力作用在兩個相互作用的物體上,平衡力作用在同一物體上。

高三物理必考知識點梳理歸納最新5篇精選5

一、用動量定理解釋生活中的現象

[例1]

豎立放置的粉筆壓在紙條的一端。要想把紙條從粉筆下抽出,又要保證粉筆不倒,應該緩緩、小心地將紙條抽出,還是快速將紙條抽出?說明理由。

[解析]

紙條從粉筆下抽出,粉筆受到紙條對它的滑動摩擦力μmg作用,方向沿著紙條抽出的方向。不論紙條是快速抽出,還是緩緩抽出,粉筆在水平方向受到的摩擦力的大小不變。在紙條抽出過程中,粉筆受到摩擦力的作用時間用t表示,粉筆受到摩擦力的衝量為μmgt,粉筆原來靜止,初動量為零,粉筆的末動量用mv表示。根據動量定理有:μmgt=mv。

如果緩慢抽出紙條,紙條對粉筆的作用時間比較長,粉筆受到紙條對它摩擦力的衝量就比較大,粉筆動量的改變也比較大,粉筆的底端就獲得了一定的速度。由於慣性,粉筆上端還沒有來得及運動,粉筆就倒了。

如果在極短的時間內把紙條抽出,紙條對粉筆的摩擦力衝量極小,粉筆的動量幾乎不變。粉筆的動量改變得極小,粉筆幾乎不動,粉筆也不會倒下。

二、用動量定理解曲線運動問題

[例2]

以速度v0水平丟擲一個質量為1kg的物體,若在丟擲後5s未落地且未與其它物體相碰,求它在5s內的`動量的變化。(g=10m/s2)。

[解析]

此題若求出末動量,再求它與初動量的向量差,則極為繁瑣。由於平丟擲去的物體只受重力且為恆力,故所求動量的變化等於重力的衝量。則

Δp=Ft=mgt=1×10×5=50kg·m/s。

[點評]

①運用Δp=mv-mv0求Δp時,初、末速度必須在同一直線上,若不在同一直線,需考慮運用向量法則或動量定理Δp=Ft求解Δp。

②用I=F·t求衝量,F必須是恆力,若F是變力,需用動量定理I=Δp求解I。

三、用動量定理解決打擊、碰撞問題

打擊、碰撞過程中的相互作用力,一般不是恆力,用動量定理可只討論初、末狀態的動量和作用力的衝量,不必討論每一瞬時力的大小和加速度大小問題。

[例3]

蹦床是運動員在一張繃緊的彈性網上蹦跳、翻滾並做各種空中動作的運動專案。一個質量為60kg的運動員,從離水平網面3.2m高處自由落下,觸網後沿豎直方向蹦回到離水平網面1.8m高處。已知運動員與網接觸的時間為1.4s。試求網對運動員的平均衝擊力。(取g=10m/s2)

[解析]

將運動員看成質量為m的質點,從高h1處下落,剛接觸網時速度方向向下,大小。

彈跳後到達的高度為h2,剛離網時速度方向向上,接觸過程中運動員受到向下的重力mg和網對其向上的彈力F。

選取豎直向上為正方向,由動量定理得:

由以上三式解得:

代入數值得:F=1.2×103N

四、用動量定理解決連續流體的作用問題

在日常生活和生產中,常涉及流體的連續相互作用問題,用常規的分析方法很難奏效。若構建柱體微元模型應用動量定理分析求解,則曲徑通幽,“柳暗花明又一村”。

[例4]

有一宇宙飛船以v=10km/s在太空中飛行,突然進入一密度為ρ=1×10-7kg/m3的微隕石塵區,假設微隕石塵與飛船碰撞後即附著在飛船上。欲使飛船保持原速度不變,試求飛船的助推器的助推力應增大為多少?(已知飛船的正橫截面積S=2m2)

[解析]

選在時間Δt內與飛船碰撞的微隕石塵為研究物件,其質量應等於底面積為S,高為vΔt的直柱體內微隕石塵的質量,即m=ρSvΔt,初動量為0,末動量為mv。設飛船對微隕石的作用力為F,由動量定理得,

根據牛頓第三定律可知,微隕石對飛船的撞擊力大小也等於20N。因此,飛船要保持原速度勻速飛行,助推器的推力應增大20N。

五、動量定理的應用可擴充套件到全過程

物體在不同階段受力情況不同,各力可以先後產生衝量,運用動量定理,就不用考慮運動的細節,可“一網打盡”,乾淨利索。

[例5]

質量為m的物體靜止放在足夠大的水平桌面上,物體與桌面的動摩擦因數為μ,有一水平恆力F作用在物體上,使之加速前進,經t1s撤去力F後,物體減速前進直至靜止,問:物體運動的總時間有多長?

[解析]

本題若運用牛頓定律解決則過程較為繁瑣,運用動量定理則可一氣呵成,一目瞭然。由於全過程初、末狀態動量為零,對全過程運用動量定理,本題同學們可以嘗試運用牛頓定律來求解,以求掌握一題多解的方法,同時比較不同方法各自的特點,這對今後的學習會有較大的幫助。

六、動量定理的應用可擴充套件到物體系

儘管系統內各物體的運動情況不同,但各物體所受衝量之和仍等於各物體總動量的變化量。

[例6]

質量為M的金屬塊和質量為m的木塊通過細線連在一起,從靜止開始以加速度a在水中下沉,經時間t1,細線斷裂,金屬塊和木塊分離,再經過時間t2木塊停止下沉,此時金屬塊的速度多大?(已知此時金屬塊還沒有碰到底面。)

[解析]

金屬塊和木塊作為一個系統,整個過程系統受到重力和浮力的衝量作用,設金屬塊和木塊的浮力分別為F浮M和F浮m,木塊停止時金屬塊的速度為vM,取豎直向下的方向為正方向,對全過程運用動量定理。

綜上,動量定量的應用非常廣泛。仔細地理解動量定理的物理意義,潛心地探究它的典型應用,對於我們深入理解有關的知識、感悟方法,提高運用所學知識和方法分析解決實際問題的能力很有幫助。