當前位置:才華齋>範例>校園>

考研數學衝刺考場答題的技巧

校園 閱讀(1.63W)

考研數學考試最忌諱考場慌亂髮揮不好,我們要注意答題的技巧,機智的來提分,能得一分是一分。小編為大家精心準備了考研數學衝刺考場答題的祕訣,歡迎大家前來閱讀。

考研數學衝刺考場答題的技巧

  考研數學衝刺考場答題的方法

▶第一:分步得分

考研數學試卷中的解答題是按步驟給分的。在考研試卷中,80%的題目是考查基礎的,所以大部分考生的情況是,題目有思路會做,但是由於當中計算失誤,導致最後的答案是錯的。或是會做,但是缺少必要關鍵的步驟,也不能拿滿分,這就是我們平時遇見的"會而不對,對而不全"的老大難問題。

糾正這一錯誤的做法是:要求考生在答題時,認真書寫解題過程,注意表達要準確、邏輯要緊密、書寫要規範,防止被扣分。

▶第二:缺步答題

若是遇到一個很困難的問題,實在是不能完全做出來。一個聰明的解題策略是,將它們分解成一個個的小問題,先解決問題的一部分,能解決多少就解決多少,能寫多少就寫多少,儘量不要空白。尤其是一些解題思路比較固定的題目,若是重要的步驟寫出來後,雖然結論沒有得出,但是分數卻可以拿到一半以上,這確實是一個不錯的主意。

▶第三:跳步答題

解題時有思路,但是發現做在一半卡殼了。一般是有兩種情況,一是某個知識點或性質忘記了,對於這種情況靜下心來捋一下這塊的內容,看看會用到哪個知識點。由於考試時間的限制,"卡殼處"的攻克來不及了,那麼可以把前面的寫下來,再寫出"證實某步之後,繼續有……"一直做到底,這就是跳步解答。如果後來中間步驟又想出來,這時不要亂七八糟插上去,可補在後面,"事實上,某步可證明或演算如下",以保持卷面的工整。

另一種情況是解題思路不對頭,此時我們需要改變方向,看看其他路徑是否可以解答。有的題目有兩到三問,有的題目各問之間沒有串聯關係,那麼會做哪問就做哪問。若是各問之間有關聯性,一般前一問是後一問解題中要用到的結論,此時若是我們第一問實在做不出來,我們可以直接做第二問。那樣就可以盡我們最大的能力拿分了。

總之大家臨場作答時就是秉著這樣的態度:會做的不要錯,不會的不要空,會多少寫多少,能寫多少寫多少,不能拿滿分就儘量多得分,不能的太多分也要得點步驟分。

  高數衝刺重要定理如何證明

高數定理證明之微分中值定理:

這一部分內容比較豐富,包括費馬引理、羅爾定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求會證。

費馬引理的條件有兩個:1.f'(x0)存在2.f(x0)為f(x)的極值,結論為f'(x0)=0。考慮函式在一點的導數,用什麼方法?自然想到導數定義。我們可以按照導數定義寫出f'(x0)的極限形式。往下如何推理?關鍵要看第二個條件怎麼用。“f(x0)為f(x)的極值”翻譯成數學語言即f(x)-f(x0)<0(或>0),對x0的某去心鄰域成立。結合導數定義式中函式部分表示式,不難想到考慮函式部分的正負號。若能得出函式部分的符號,如何得到極限值的符號呢?極限的保號性是個橋樑。

費馬引理中的“引理”包含著引出其它定理之意。那麼它引出的定理就是我們下面要討論的羅爾定理。若在微分中值定理這部分推舉一個考頻最高的,那羅爾定理當之無愧。該定理的條件和結論想必各位都比較熟悉。條件有三:“閉區間連續”、“開區間可導”和“端值相等”,結論是在開區間存在一點(即所謂的中值),使得函式在該點的導數為0。

該定理的證明不好理解,需認真體會:條件怎麼用?如何和結論建立聯絡?當然,我們現在討論該定理的證明是“馬後炮”式的:已經有了證明過程,我們看看怎麼去理解掌握。如果在羅爾生活的時代,證出該定理,那可是十足的創新,是要流芳百世的。

閒言少敘,言歸正傳。既然我們討論費馬引理的作用是要引出羅爾定理,那麼羅爾定理的證明過程中就要用到費馬引理。我們對比這兩個定理的結論,不難發現是一致的:都是函式在一點的導數為0。話說到這,可能有同學要說:羅爾定理的證明並不難呀,由費馬引理得結論不就行了。大方向對,但過程沒這麼簡單。起碼要說清一點:費馬引理的條件是否滿足,為什麼滿足?

前面提過費馬引理的條件有兩個——“可導”和“取極值”,“可導”不難判斷是成立的,那麼“取極值”呢?似乎不能由條件直接得到。那麼我們看看哪個條件可能和極值產生聯絡。注意到羅爾定理的第一個條件是函式在閉區間上連續。我們知道閉區間上的連續函式有很好的性質,哪條性質和極值有聯絡呢?不難想到最值定理。

那麼最值和極值是什麼關係?這個點需要想清楚,因為直接影響下面推理的走向。結論是:若最值取在區間內部,則最值為極值;若最值均取在區間端點,則最值不為極值。那麼接下來,分兩種情況討論即可:若最值取在區間內部,此種情況下費馬引理條件完全成立,不難得出結論;若最值均取在區間端點,注意到已知條件第三條告訴我們端點函式值相等,由此推出函式在整個閉區間上的最大值和最小值相等,這意味著函式在整個區間的表示式恆為常數,那在開區間上任取一點都能使結論成立。

拉格朗日定理和柯西定理是用羅爾定理證出來的。掌握這兩個定理的證明有一箭雙鵰的效果:真題中直接考過拉格朗日定理的證明,若再考這些原定理,那自然駕輕就熟;此外,這兩個的定理的證明過程中體現出來的基本思路,適用於證其它結論。

以拉格朗日定理的證明為例,既然用羅爾定理證,那我們對比一下兩個定理的結論。羅爾定理的結論等號右側為零。我們可以考慮在草稿紙上對拉格朗日定理的結論作變形,變成羅爾定理結論的形式,移項即可。接下來,要從變形後的式子讀出是對哪個函式用羅爾定理的結果。這就是構造輔助函式的過程——看等號左側的式子是哪個函式求導後,把x換成中值的結果。這個過程有點像犯罪現場調查:根據這個犯罪現場,反推嫌疑人是誰。當然,構造輔助函式遠比破案要簡單,簡單的題目直接觀察;複雜一些的,可以把中值換成x,再對得到的函式求不定積分。

高數定理證明之求導公式:

2015年真題考了一個證明題:證明兩個函式乘積的導數公式。幾乎每位同學都對這個公式怎麼用比較熟悉,而對它怎麼來的較為陌生。實際上,從授課的角度,這種在2015年前從未考過的基本公式的證明,一般只會在基礎階段講到。如果這個階段的考生帶著急功近利的心態只關注結論怎麼用,而不關心結論怎麼來的,那很可能從未認真思考過該公式的證明過程,進而在考場上變得很被動。這裡給2017考研學子提個醒:要重視基礎階段的複習,那些真題中未考過的重要結論的證明,有可能考到,不要放過。

當然,該公式的證明並不難。先考慮f(x)*g(x)在點x0處的導數。函式在一點的導數自然用導數定義考察,可以按照導數定義寫出一個極限式子。該極限為“0分之0”型,但不能用洛必達法則,因為分子的導數不好算(乘積的導數公式恰好是要證的,不能用!)。利用數學上常用的拼湊之法,加一項,減一項。這個“無中生有”的項要和前後都有聯絡,便於提公因子。之後分子的四項兩兩配對,除以分母后考慮極限,不難得出結果。再由x0的任意性,便得到了f(x)*g(x)在任意點的導數公式。

高數定理證明之積分中值定理:

該定理條件是定積分的被積函式在積分割槽間(閉區間)上連續,結論可以形式地記成該定積分等於把被積函式拎到積分號外面,並把積分變數x換成中值。如何證明?可能有同學想到用微分中值定理,理由是微分相關定理的結論中含有中值。可以按照此思路往下分析,不過更易理解的思路是考慮連續相關定理(介值定理和零點存在定理),理由更充分些:上述兩個連續相關定理的結論中不但含有中值而且不含導數,而待證的積分中值定理的結論也是含有中值但不含導數。

若我們選擇了用連續相關定理去證,那麼到底選擇哪個定理呢?這裡有個小的技巧——看中值是位於閉區間還是開區間。介值定理和零點存在定理的結論中的中值分別位於閉區間和開區間,而待證的積分中值定理的結論中的中值位於閉區間。那麼何去何從,已經不言自明瞭。

若順利選中了介值定理,那麼往下如何推理呢?我們可以對比一下介值定理和積分中值定理的結論:介值定理的結論的等式一邊為某點處的函式值,而等號另一邊為常數A。我們自然想到把積分中值定理的結論朝以上的形式變形。等式兩邊同時除以區間長度,就能達到我們的要求。當然,變形後等號一側含有積分的式子的長相還是挺有迷惑性的,要透過現象看本質,看清楚定積分的值是一個數,進而定積分除以區間長度後仍為一個數。這個數就相當於介值定理結論中的A。

接下來如何推理,這就考察各位對介值定理的熟悉程度了。該定理條件有二:1.函式在閉區間連續,2.實數A位於函式在閉區間上的最大值和最小值之間,結論是該實數能被取到(即A為閉區間上某點的函式值)。再看若積分中值定理的條件成立否能推出介值定理的條件成立。函式的連續性不難判斷,僅需說明定積分除以區間長度這個實數位於函式的最大值和最小值之間即可。而要考察一個定積分的值的範圍,不難想到比較定理(或估值定理)。

高數定理證明之微積分基本定理:

該部分包括兩個定理:變限積分求導定理和牛頓-萊布尼茨公式。

變限積分求導定理的條件是變上限積分函式的被積函式在閉區間連續,結論可以形式地理解為變上限積分函式的導數為把積分號扔掉,並用積分上限替換被積函式的自變數。注意該求導公式對閉區間成立,而閉區間上的導數要區別對待:對應開區間上每一點的導數是一類,而區間端點處的導數屬單側導數。花開兩朵,各表一枝。我們先考慮變上限積分函式在開區間上任意點x處的導數。一點的導數仍用導數定義考慮。至於導數定義這個極限式如何化簡,筆者就不能剝奪讀者思考的權利了。單側導數類似考慮。

“牛頓-萊布尼茨公式是聯絡微分學與積分學的橋樑,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標誌著微積分完整體系的形成,從此微積分成為一門真正的學科。”這段話精彩地指出了牛頓-萊布尼茨公式在高數中舉足輕重的作用。而多數考生能熟練運用該公式計算定積分。不過,提起該公式的證明,熟悉的考生並不多。

該公式和變限積分求導定理的公共條件是函式f(x)在閉區間連續,該公式的另一個條件是F(x)為f(x)在閉區間上的一個原函式,結論是f(x)在該區間上的定積分等於其原函式在區間端點處的函式值的差。該公式的.證明要用到變限積分求導定理。若該公式的條件成立,則不難判斷變限積分求導定理的條件成立,故變限積分求導定理的結論成立。

注意到該公式的另一個條件提到了原函式,那麼我們把變限積分求導定理的結論用原函式的語言描述一下,即f(x)對應的變上限積分函式為f(x)在閉區間上的另一個原函式。根據原函式的概念,我們知道同一個函式的兩個原函式之間只差個常數,所以F(x)等於f(x)的變上限積分函式加某個常數C。萬事俱備,只差寫一下。將該公式右側的表示式結合推出的等式變形,不難得出結論。

  考研數學考前複習誤區

▶誤區一:“分割槽複習”

很多同學都傾向於把數學分為三區——高數、線代、概率(數二除外),先把高數複習得滾瓜爛熟了,再著手複習剩下兩門(數二一門)。這樣做有幾點危害:如果你在一段時間只是看高數,看個兩三遍,確實可以在短時間內有很大的進步,公式也都記住了,題目也做的可以背出來了,基本上在高數方面所向無敵了。但不要忘記人的遺忘特性有多麼恐怖,等你放下高數書,花很多時間餓補線代、概率(數二除外)時,辛辛苦苦在你腦中積攢下來的知識又會丟回到課本中。

建議:

同學們一定在複習數學時,把這三門科目(數二兩門)視為一個整體。一輪複習就是按部就班、踏踏實實地把三門科目(數二兩門)按順序複習完。我相信到現在這個階段,大家應該只是在每科目中有部分章節掌握不到位,那麼就需要大家在複習時把理解不清晰的章節、知識點記錄下來或是特別標註,那麼再下一輪複習時就可以有針對性。

隨著“大限”將至,同學們在複習時一定要越來越有目的性,不能再像強化訓練一樣全面撒網、泛泛掌握了,現在的重心應該是查漏補缺、強化薄弱部分,獲得更明顯的進步。

▶誤區二:只看書不做題

有的同學會看很多輔導書,但依然得不到高分,就是因為沒有動筆計算,沒有提高自身的計算能力,但考研並不是考難題,往往是中等難度甚至是基礎題加上較複雜的計算。所以沒有強大的計算能力,是無法在考研數學中獲勝。

建議:

同學們在看輔導書時,一定要認認真真做好每道題,即使很難算,也一定耐下心來算出正確答案。其實,這個過程不僅可以提高自身的計算能力,甚至還會在做題中發現一些以前沒有注意到的知識點掌握的漏缺,畢竟光看還是會忽略一些細節的,但如果動手算了,真的有沒有理解的知識點,還是會在做題中反映出來的,更加有助於自身複習的查漏補缺,這正是本階段所需要達到的目的。

▶誤區三:和其他同學比進度

每個人的學習能力不同,吸收能力不同,複習計劃也不同,知識掌握程度不同,沒有任何可比性。請記住你的最大的對手就是自己,應該每人反思是否比前一天有進步,這樣你才能在強大的推動力下步步向前,日日進步。

建議:

現階段要考核大家的不光是複習進度與知識掌握情況,更多的是學習心態。同學們要明白真正決定這場戰役的勝利與否主要還是在那“最後一搏”上,因此,大家一定要從現在開始訓練自己的心理承受能力,調節心理狀態,保持一個平和的心情來看待每一天的複習。

當發現因為學習時間過長或是激進心態出現而導致學習效率降低時,一定要到戶外做適當運動、放鬆一下心情,可以散散步、打羽毛或是跑步,不用太劇烈,主要還是為了讓自己緊張的情緒緩和一下,有更好的狀態迎接新的挑戰。