當前位置:才華齋>範例>校園>

高中化學必修2必備的知識要點

校園 閱讀(1.97W)

高中化學與國中化學相比,知識面擴大,深度增加。在必修二的化學課本中,我們會接觸很多比較陌生的概念,雖然知識比較難懂,但只要用心學就能學好。下面是本站小編為大家整理的高中化學重要的知識,希望對大家有用!

高中化學必修2必備的知識要點

  高中化學必修二基礎知識

一、化學能與熱能

1、在任何的化學反應中總伴有能量的變化。

原因:當物質發生化學反應時,斷開反應物中的化學鍵要吸收能量,而形成生成物中的化學鍵要放出能量。化學鍵的斷裂和形成是化學反應中能量變化的主要原因。一個確定的化學反應在發生過程中是吸收能量還是放出能量,決定於反應物的總能量與生成物的總能量的相對大小。E反應物總能量>E生成物總能量,為放熱反應。E反應物總能量

2、常見的放熱反應和吸熱反應

常見的放熱反應:①所有的燃燒與緩慢氧化。②酸鹼中和反應。③金屬與酸、水反應制氫氣。

④大多數化合反應(特殊:C+CO2= 2CO是吸熱反應)。

常見的吸熱反應:①以C、H2、CO為還原劑的氧化還原反應如:C(s)+H2O(g) = CO(g)+H2(g)。

②銨鹽和鹼的反應如Ba(OH)2•8H2O+NH4Cl=BaCl2+2NH3↑+10H2O

③大多數分解反應如KClO3、KMnO4、CaCO3的分解等。

[練習]1、下列反應中,即屬於氧化還原反應同時又是吸熱反應的是( B )

A. Ba(OH)2•8H2O與NH4Cl反應 B.灼熱的炭與CO2反應

C.鋁與稀鹽酸 D.H2與O2的燃燒反應

2、已知反應X+Y=M+N為放熱反應,對該反應的下列說法中正確的是( C )

A. X的能量一定高於M B. Y的能量一定高於N

C. X和Y的總能量一定高於M和N的總能量

D. 因該反應為放熱反應,故不必加熱就可發生

二、化學能與電能

1、化學能轉化為電能的方式:

電能

(電力) 火電(火力發電) 化學能→熱能→機械能→電能 缺點:環境汙染、低效

原電池 將化學能直接轉化為電能 優點:清潔、高效

2、原電池原理

(1)概念:把化學能直接轉化為電能的裝置叫做原電池。

(2)原電池的工作原理:通過氧化還原反應(有電子的轉移)把化學能轉變為電能。

(3)構成原電池的條件:(1)有活潑性不同的兩個電極;(2)電解質溶液(3)閉合迴路(4)自發的氧化還原反應

(4)電極名稱及發生的反應:

負極:較活潑的金屬作負極,負極發生氧化反應,

電極反應式:較活潑金屬-ne-=金屬陽離子

負極現象:負極溶解,負極質量減少。

正極:較不活潑的金屬或石墨作正極,正極發生還原反應,

電極反應式:溶液中陽離子+ne-=單質

正極的現象:一般有氣體放出或正極質量增加。

(5)原電池正負極的判斷方法:

①依據原電池兩極的材料

較活潑的金屬作負極(K、Ca、Na太活潑,不能作電極);

較不活潑金屬或可導電非金屬(石墨)、氧化物(MnO2)等作正極。

②根據電流方向或電子流向:(外電路)的電流由正極流向負極;電子則由負極經外電路流向原電池的正極。

③根據內電路離子的遷移方向:陽離子流向原電池正極,陰離子流向原電池負極。

④根據原電池中的反應型別:

負極:失電子,發生氧化反應,現象通常是電極本身消耗,質量減小。

正極:得電子,發生還原反應,現象是常伴隨金屬的析出或H2的放出。

(6)原電池電極反應的書寫方法:

(i)原電池反應所依託的化學反應原理是氧化還原反應,負極反應是氧化反應,正極反應是還原反應。因此書寫電極反應的方法歸納如下:

①寫出總反應方程式。 ②把總反應根據電子得失情況,分成氧化反應、還原反應。

③氧化反應在負極發生,還原反應在正極發生,反應物和生成物對號入座,注意酸鹼介質和水等參與反應。

(ii)原電池的總反應式一般把正極和負極反應式相加而得。

(7)原電池的應用:①加快化學反應速率,如粗鋅制氫氣速率比純鋅制氫氣快。②比較金屬活動性強弱。③設計原電池。④金屬的.防腐。

  必修二化學知識重點

資源綜合利用、環境保護

一、煤和石油

1、煤的組成:煤是由有機物和少量無機物組成的複雜混合物,主要含碳元素,還含有少量的氫、氧、氮、硫等元素。

2、煤的綜合利用:煤的乾餾、煤的氣化、煤的液化。

煤的乾餾是指將煤在隔絕空氣的條件下加強使其分解的過程,也叫煤的焦化。

煤乾餾得到焦炭、煤焦油、焦爐氣等。

煤的氣化是將其中的有機物轉化為可燃性氣體的過程。

煤的液化是將煤轉化成液體燃料的過程。

3、石油的組成:石油主要是多種烷烴、環烷烴和芳香烴多種碳氫化合物的混合物,沒有固定的沸點。

4、石油的加工:石油的分餾、催化裂化、裂解。

二、環境保護和綠色化學

環境問題主要是指由於人類不合理地開發和利用自然資源而造成的生態環境破壞,以及工農業生產和人類生活所造成的環境汙染。

1、環境汙染

(1)大氣汙染

大氣汙染物:顆粒物(粉塵)、硫的氧化物(SO2和SO3)、氮的氧化物(NO和NO2)、CO、碳氫化合物,以及氟氯代烷等。

大氣汙染的防治:合理規劃工業發展和城市建設佈局;調整能源結構;運用各種防治汙染的技術;加強大氣質量監測;充分利用環境自淨能力等。

(2)水汙染

水汙染物:重金屬(Ba2+、Pb2+等)、酸、鹼、鹽等無機物,耗氧物質,石油和難降解的有機物,洗滌劑等。

水汙染的防治方法:控制、減少汙水的任意排放。

(3)土壤汙染

土壤汙染物:城市汙水、工業廢水、生活垃圾、工礦企業固體廢棄物、化肥、農藥、大氣沉降物、牲畜排洩物、生物殘體。

土壤汙染的防治措施:控制、減少汙染源的排放。

2、綠色化學

綠色化學的核心就是利用化學原理從源頭上減少和消除工業生產對環境的汙染。按照綠色化學的原則,最理想的“原子經濟”就是反應物的原子全部轉化為期望的最終產物(即沒有副反應,不生成副產物,更不能產生廢棄物),這時原子利用率為100%。

3、環境汙染的熱點問題:

(1)形成酸雨的主要氣體為SO2和NOx。

(2)破壞臭氧層的主要物質是氟利昂(CCl2F2)和NOx。

(3)導致全球變暖、產生“溫室效應”的氣體是CO2。

(4)光化學煙霧的主要原因是汽車排出的尾氣中氮氧化物、一氧化氮、碳氫化合物。

(5)“白色汙染”是指聚乙烯等塑料垃圾。

(6)引起赤潮的原因:工農業及城市生活汙水含大量的氮、磷等營養元素。(含磷洗衣粉的使用和不合理使用磷肥是造成水體富營養化的重要原因之一。)

  高中化學考點知識

1、金屬鍵的強弱和金屬晶體熔沸點的變化規律:陽離子所帶電荷越多、半徑越小,金屬鍵越強,熔沸點越高,如熔點:NaNa>K>Rb>Cs。金屬鍵的強弱可以用金屬的原子

2、簡單配合物的成鍵情況(配合物的空間構型和中心原子的雜化型別不作要求)

概念

表示

條件

共用電子對由一個原子單方向提供給另一原子共用所形成的共價鍵。

A:電子對給予體

B:電子對接受體

其中一個原子必須提供孤對電子,另一原子必須能接受孤對電子的軌道。

(1)配位鍵:一個原子提供一對電子與另一個接受電子的原子形成的共價鍵,即成鍵的兩個原子一方提供孤對電子,一方提供空軌道而形成的共價鍵。

(2)①配合物:由提供孤電子對的配位體與接受孤電子對的中心原子(或離子)以配位鍵形成的化合物稱配合物,又稱絡合物

②形成條件:

a.中心原子(或離子)必須存在空軌道

b.配位體具有提供孤電子對的原子

③配合物的組成

④配合物的性質:配合物具有一定的穩定性。配合物中配位鍵越強,配合物越穩定。當作為中心原子的金屬離子相同時,配合物的穩定性與配體的性質有關。

3、分子間作用力:把分子聚集在一起的作用力。分子間作用力是一種靜電作用,比化學鍵弱得多,包括範德華力和氫鍵。

範德華力一般沒有飽和性和方向性,而氫鍵則有飽和性和方向性。

4、分子晶體:分子間以分子間作用力(範德華力、氫鍵)相結合的晶體.典型的有冰、乾冰。

5、分子間作用力強弱和分子晶體熔沸點大小的判斷:組成和結構相似的物質,相對分子質量越大,分子間作用力越大,克服分子間引力使物質熔化和氣化就需要更多的能量,熔、沸點越高,但存在氫鍵時分子晶體的熔沸點往往反常地高。

6、NH3、H2O、HF中由於存在氫鍵,使得它們的沸點比同族其它元素氫化物的沸點反常地高。

影響物質的性質方面:增大溶沸點,增大溶解性

表示方法:X—H……Y(N O F) 一般都是氫化物中存在。

7、幾種比較:

(1)離子鍵、共價鍵和金屬鍵的比較

化學鍵型別

離子鍵

共價鍵

金屬鍵

概念

陰、陽離子間通過靜電作用所形成的化學鍵

原子間通過共用電子對所形成的化學鍵

金屬陽離子與自由電子通過相互作用而形成的化學鍵

成鍵微粒

陰陽離子

原子

金屬陽離子和自由電子

成鍵性質

靜電作用

共用電子對

電性作用

形成條件

活潑金屬與活潑的非金屬元素

非金屬與非金屬元素

金屬內部

例項

NaCl、MgO

HCl、H2SO4

Fe、Mg

(2)非極性鍵和極性鍵的比較

非極性鍵

極性鍵

概念

同種元素原子形成的共價鍵

不同種元素原子形成的共價鍵,共用電子對發生偏移

原子吸引電子能力

相同

不同

共用電子對

不偏向任何一方

偏向吸引電子能力強的原子

成鍵原子電性

電中性

顯電性

形成條件

由同種非金屬元素組成

由不同種非金屬元素組成

(3)物質溶沸點的比較

①不同類晶體:一般情況下,原子晶體>離子晶體>分子晶體

②同種型別晶體:構成晶體質點間的作用大,則熔沸點高,反之則小。

a.離子晶體:離子所帶的電荷數越高,離子半徑越小,則其熔沸點就越高。

b.分子晶體:對於同類分子晶體,式量越大,則熔沸點越高。

c.原子晶體:鍵長越小、鍵能越大,則熔沸點越高。

③常溫常壓下狀態

a.熔點:固態物質>液態物質

b.沸點:液態物質>氣態物質