當前位置:才華齋>範例>校園>

布朗運動的物理意義是什麼

校園 閱讀(3.13W)

布朗運動是微小粒子表現出的無規則運動,對於液體中各種不同的懸浮微粒,都可以觀察到布朗運動。下面和小編一起來看布朗運動的物理意義是什麼,希望有所幫助!

布朗運動的物理意義是什麼

布朗運動的物理意義

被分子撞擊的懸浮微粒做無規則運動的現象叫做布朗運動。布朗運動是將看起來連成一片的液體,在高倍顯微鏡下看其實是由許許多多分子組成的。液體分子不停地做無規則的運動,不斷地隨機撞擊懸浮微粒。當懸浮的微粒足夠小的時候,由於受到的來自各個方向的液體分子的撞擊作用是不平衡的。在某一瞬間,微粒在另一個方向受到的撞擊作用超強的時候,致使微粒又向其它方向運動,這樣就引起了微粒的無規則的運動,即布朗運動。

例如,在顯微鏡下觀察懸浮在水中的藤黃粉、花粉微粒,或在無風情形觀察空氣中的煙粒、塵埃時都會看到這種運動。溫度越高,運動越激烈。它是1827年植物學家R.布朗最先用顯微鏡觀察懸浮在水中花粉的運動而發現的。作布朗運動的粒子非常微小,直徑約1~10微米,在周圍液體或氣體分子的碰撞下,產生一種漲落不定的淨作用力,導致微粒的布朗運動。如果布朗粒子相互碰撞的機會很少,可以看成是巨大分子組成的理想氣體,則在重力場中達到熱平衡後,其數密度按高度的分佈應遵循玻耳茲曼分佈(麥克斯韋-玻爾茲曼分佈)。J.B.佩蘭的實驗證實了這一點,並由此相當精確地測定了阿伏伽德羅常量及一系列與微粒有關的資料。1905年A.愛因斯坦根據擴散方程建立了布朗運動的統計理論。布朗運動的發現、實驗研究和理論分析間接地證實了分子的無規則熱運動,對於氣體動理論的建立以及確認物質結構的原子性具有重要意義,並且推動統計物理學特別是漲落理論的發展。由於布朗運動代表一種隨機漲落現象,它的理論對於儀表測量精度限制的研究以及高倍放大電訊電路中背景噪聲的研究等有廣泛應用。

這是1826年英國植物學家布朗(1773-1858)用顯微鏡觀察懸浮在水中的花粉時發現的。後來把懸浮微粒的這種運動叫做布朗運動。不只是花粉和小炭粒,對於液體中各種不同的懸浮微粒,都可以觀察到布朗運動。布朗運動可在氣體和液體中進行。

布朗運動的特點

無規則

每個液體分子對小顆粒撞擊時給顆粒一定的瞬時衝力,由於分子運動的無規則性,每一瞬間,每個分子撞擊時對小顆粒的衝力大小、方向都不相同,合力大小、方向隨時改變,因而布朗運動是無規則的。

永不停歇

因為液體分子的運動是永不停息的,所以液體分子對固體微粒的'撞擊也是永不停息的。

顆粒越小,布朗運動越明顯

顆粒越小,顆粒的表面積越小,同一瞬間,撞擊顆粒的液體分子數越少,據統計規律,少量分子同時作用於小顆粒時,它們的合力是不可能平衡的。而且,同一瞬間撞擊的分子數越少,其合力越不平衡,又顆粒越小,其質量越小,因而顆粒的加速度越大,運動狀態越容易改變,故顆粒越小,布朗運動越明顯。

溫度越高,布朗運動越明顯

溫度越高,液體分子的運動越劇烈,分子撞擊顆粒時對顆粒的撞擊力越大,因而同一瞬間來自各個不同方向的液體分子對顆粒撞擊力越大,小顆粒的運動狀態改變越快,故溫度越高,布朗運動越明顯。

肉眼看不見

做布朗運動的固體顆粒很小,肉眼是看不見的,必須在顯微鏡才能看到。

布朗運動間接反映並證明了分子熱運動。

布朗運動的產生原因

1827年,蘇格蘭植物學家羅伯特·布朗發現水中的花粉及其它懸浮的微小顆粒不停地作不規則的曲線運動,稱為布朗運動。人們長期都不知道其中的原理。50年後,J·德耳索提出這些微小顆粒是受到周圍分子的不平衡的碰撞而導致的運動。後來得到愛因斯坦的研究的證明。布朗運動也就成為分子運動論和統計力學發展的基礎。

懸浮在液體或氣體中的微粒(線度~10-3mm)表現出的永不停止的無規則運動,如墨汁稀釋後碳粒在水中的無規則運動,藤黃顆粒在水中的無規則運動……而且溫度越高,微粒的布朗運動越劇烈。布朗運動代表了一種隨機漲落現象。

布朗運動是大量分子做無規則運動對懸浮的固體微粒各個方向撞擊作用的不均衡性造成的,所以布朗運動是大量液體分子集體行為的結果。