當前位置:才華齋>計算機>C語言>

c語言中free的用法

C語言 閱讀(1.91W)

free()與malloc()函式配對使用,釋放malloc函式申請的動態記憶體。下面小編就跟你們詳細介紹下C語言中free的用法,希望對你們有用。

c語言中free的用法

c語言中free的用法如下:

一、malloc()和free()的基本概念以及基本用法:

1、函式原型及說明:

void *malloc(long NumBytes):該函式分配了NumBytes個位元組,並返回了指向這塊記憶體的指標。如果分配失敗,則返回一個空指標(NULL)。

關於分配失敗的原因,應該有多種,比如說空間不足就是一種。

void free(void *FirstByte): 該函式是將之前用malloc分配的空間還給程式或者是作業系統,也就是釋放了這塊記憶體,讓它重新得到自由。

2、函式的用法:

其實這兩個函式用起來倒不是很難,也就是malloc()之後覺得用夠了就甩了它把它給free()了,舉個簡單例子:

程式程式碼:

// Code...

char *Ptr = NULL;

Ptr = (char *)malloc(100 * sizeof(char));

if (NULL == Ptr)

{

exit (1);

}

gets(Ptr);

// code...

free(Ptr);

Ptr = NULL;

// code...

就是這樣!當然,具體情況要具體分析以及具體解決。比如說,你定義了一個指標,在一個函式裡申請了一塊記憶體然後通過函式返回傳遞給這個指標,那麼也許釋放這塊記憶體這項工作就應該留給其他函數了。

3、關於函式使用需要注意的一些地方:

A、申請了記憶體空間後,必須檢查是否分配成功。

B、當不需要再使用申請的記憶體時,記得釋放;釋放後應該把指向這塊記憶體的指標指向NULL,防止程式後面不小心使用了它。

C、這兩個函式應該是配對。如果申請後不釋放就是記憶體洩露;如果無故釋放那就是什麼也沒有做。釋放只能一次,如果釋放兩次及兩次以上會

出現錯誤(釋放空指標例外,釋放空指標其實也等於啥也沒做,所以釋放空指標釋放多少次都沒有問題)。

D、雖然malloc()函式的型別是(void *),任何型別的指標都可以轉換成(void *),但是最好還是在前面進行強制型別轉換,因為這樣可以躲過一

些編譯器的檢查。

好了!最基礎的東西大概這麼說!現在進入第二部分:

  二、malloc()到底從哪裡得來了記憶體空間:

1、malloc()到底從哪裡得到了記憶體空間?答案是從堆裡面獲得空間。也就是說函式返回的指標是指向堆裡面的一塊記憶體。作業系統中有一個記錄空閒記憶體地址的連結串列。當作業系統收到程式的申請時,就會遍歷該連結串列,然後就尋找第一個空間大於所申請空間的堆結點,然後就將該結點從空閒結點連結串列中刪除,並將該結點的空間分配給程式。就是這樣!

說到這裡,不得不另外插入一個小話題,相信大家也知道是什麼話題了。什麼是堆?說到堆,又忍不住說到了棧!什麼是棧?下面就另外開個小部分專門而又簡單地說一下這個題外話:

2、什麼是堆:堆是大家共有的空間,分全域性堆和區域性堆。全域性堆就是所有沒有分配的空間,區域性堆就是使用者分配的空間。堆在作業系統對程序 初始化的時候分配,執行過程中也可以向系統要額外的堆,但是記得用完了要還給作業系統,要不然就是記憶體洩漏。

什麼是棧:棧是執行緒獨有的,儲存其執行狀態和區域性自動變數的。棧線上程開始的時候初始化,每個執行緒的棧互相獨立。每個函式都有自己的棧,棧被用來在函式之間傳遞引數。作業系統在切換執行緒的時候會自動的切換棧,就是切換SS/ESP暫存器。棧空間不需要在高階語言裡面顯式的分配和釋放。

以上的概念描述是標準的描述,不過有個別語句被我刪除,不知道因為這樣而變得不標準了^_^.

通過上面對概念的描述,可以知道:

棧是由編譯器自動分配釋放,存放函式的引數值、區域性變數的值等。操作方式類似於資料結構中的棧。

堆一般由程式設計師分配釋放,若不釋放,程式結束時可能由OS回收。注意這裡說是可能,並非一定。所以我想再強調一次,記得要釋放!

注意它與資料結構中的堆是兩回事,分配方式倒是類似於連結串列。(這點我上面稍微提過)值得關注,windows會用到系統的堆嗎。

所以,舉個例子,如果你在函式上面定義了一個指標變數,然後在這個函式裡申請了一塊記憶體讓指標指向它。實際上,這個指標的地址是在棧上,但是它所指向的內容卻是在堆上面的!這一點要注意!所以,再想想,在一個函式裡申請了空間後,比如說下面這個函式:

程式程式碼:

// code...

void Function(void)

{

char *p = (char *)malloc(100 * sizeof(char));

}

就這個例子,千萬不要認為函式返回,函式所在的棧被銷燬指標也跟著銷燬,申請的記憶體也就一樣跟著銷燬了!這絕對是錯誤的!因為申請的記憶體在堆上,而函式所在的棧被銷燬跟堆完全沒有啥關係。所以,還是那句話:記得釋放!

3、free()到底釋放了什麼

這個問題比較簡單,其實我是想和第二大部分的題目相呼應而已!哈哈!free()釋放的是指標指向的記憶體!注意!釋放的是記憶體,不是指標!這點非常非常重要!指標是一個變數,只有程式結束時才被銷燬。釋放了記憶體空間後,原來指向這塊空間的指標還是存在!只不過現在指標指向的內容的垃圾,是未定義的,所以說是垃圾。因此,前面我已經說過了,釋放記憶體後把指標指向NULL,防止指標在後面不小心又被解引用了。非常重要啊這一點!

好了!這個“題外話”終於說完了。就這麼簡單說一次,知道個大概就可以了!下面就進入第三個部分:

 三、malloc()以及free()的機制:

這個部分我今天才有了新的認識!而且是轉折性的認識!所以,這部分可能會有更多一些認識上的錯誤!不對的地方請大家幫忙指出!

事實上,仔細看一下free()的函式原型,也許也會發現似乎很神奇,free()函式非常簡單,只有一個引數,只要把指向申請空間的指標傳遞

給free()中的引數就可以完成釋放工作!這裡要追蹤到malloc()的申請問題了。申請的時候實際上佔用的記憶體要比申請的大。因為超出的空間是用來記錄對這塊記憶體的管理資訊。先看一下在《UNIX環境高階程式設計》中第七章的一段話:

大多數實現所分配的儲存空間比所要求的要稍大一些,額外的空間用來記錄管理資訊——分配塊的長度,指向下一個分配塊的指標等等。這就意味著如果寫過一個已分配區的尾端,則會改寫後一塊的管理資訊。這種型別的錯誤是災難性的,但是因為這種錯誤不會很快就暴露出來,所以也就很難發現。將指向分配塊的指標向後移動也可能會改寫本塊的管理資訊。

以上這段話已經給了我們一些資訊了。malloc()申請的空間實際我覺得就是分了兩個不同性質的空間。一個就是用來記錄管理資訊的空間,另外一個就是可用空間了。而用來記錄管理資訊的實際上是一個結構體。在C語言中,用結構體來記錄同一個物件的不同資訊是

天經地義的事!下面看看這個結構體的原型:

程式程式碼:

struct mem_control_block {

int is_available; //這是一個標記?

int size; //這是實際空間的大小

};

對於size,這個是實際空間大小。這裡其實我有個疑問,is_available是否是一個標記?因為我看了free()的原始碼之後對這個變數感覺有點納悶(原始碼在下面分析)。這裡還請大家指出!

所以,free()就是根據這個結構體的資訊來釋放malloc()申請的空間!而結構體的兩個成員的大小我想應該是作業系統的事了。但是這裡有一個問題,malloc()申請空間後返回一個指標應該是指向第二種空間,也就是可用空間!不然,如果指向管理資訊空間的話,寫入的內容和結構體的型別有可能不一致,或者會把管理資訊遮蔽掉,那就沒法釋放記憶體空間了,所以會發生錯誤!(感覺自己這裡說的是廢話)

好了!下面看看free()的原始碼,我自己分析了一下,覺得比起malloc()的原始碼倒是容易簡單很多。只是有個疑問,下面指出!

程式程式碼:

看一下函式第二句,這句非常重要和關鍵。其實這句就是把指向可用空間的指標倒回去,讓它指向管理資訊的那塊空間,因為這裡是在值上減去了一個結構體的大小!後面那一句free->is_available =1;我有點納悶!我的想法是:這裡is_available應該只是一個標記而已!因為從這個變數的名稱上來看,is_available翻譯過來就是“是可以用”。不要說我土!我覺得變數名字可以反映一個變數的作用,特別是嚴謹的程式碼。這是原始碼,所以我覺得絕對是嚴謹的!!這個變數的值是1,表明是可以用的空間!只是這裡我想了想,如果把它改為0或者是其他值不知道會發生什麼事?!但是有一點我可以肯定,就是釋放絕對不會那麼順利進行!因為這是一個標記!

當然,這裡可能還是有人會有疑問,為什麼這樣就可以釋放呢??我剛才也有這個疑問。後來我想到,釋放是作業系統的事,那麼就free()這個原始碼來看,什麼也沒有釋放,對吧?但是它確實是確定了管理資訊的那塊記憶體的內容。所以,free()只是記錄了一些資訊,然後告訴作業系統那塊記憶體可以去釋放,具體怎麼告訴作業系統的我不清楚,但我覺得這個已經超出了我這篇文章的討論範圍了。

那麼,我之前有個錯誤的認識,就是認為指向那塊記憶體的指標不管移到那塊記憶體中的哪個位置都可以釋放那塊記憶體!但是,這是大錯特錯!釋放是不可以釋放一部分的!首先這點應該要明白。而且,從free()的原始碼看,ptr只能指向可用空間的首地址,不然,減去結構體大小之後一定不是指向管理資訊空間的首地址。所以,要確保指標指向可用空間的首地址!不信嗎?自己可以寫一個程式然後移動指向可用空間的指標,看程式會有會崩!

最後可能想到malloc()的原始碼看看malloc()到底是怎麼分配空間的,這裡面涉及到很多其他方面的知識!有興趣的朋友可以自己去下載源

程式碼去看看。

=================================================

C語言的malloc分配的的`記憶體大小

沒讀過malloc()的原始碼,所以這裡純粹是"理論研究"。

malloc()在執行期動態分配分配記憶體,free()釋放由其分配的記憶體。malloc()在分配使用者傳入的大小的時候,還分配的一個相關的用於管理的額外記憶體,不過,使用者是看不到的。所以,

實際的大小 = 管理空間 + 使用者空間

那麼,這個管理記憶體放在什麼位置呢,它要讓free()函式能夠找到,這樣才能知道有多少記憶體要釋放,所以一種可能的方案是在分配記憶體的初始部分用若干個位元組來儲存分配的記憶體的大小。這裡要注意一個問題,就是,在malloc()將這個分配的空間返回給某個指標後,這個指標的使用與其它指標應該是沒有差別的,所以,管理空間應該在這個指標指向的空間之外,但又要free()從這個指標可以找到管理資訊,所以,這個管理空間的大小放在指標指向的相反方向。故malloc()的具體操作應該就是分配一塊記憶體,在前面若干位元組中寫入管理資訊,然後返回管理資訊所佔位元組之後的地址指標。

=================================================

malloc()工作機制

malloc函式的實質體現在,它有一個將可用的記憶體塊連線為一個長長的列表的所謂空閒連結串列。呼叫malloc函式時,它沿連線表尋找一個大到足以滿足使用者請求所需要的記憶體塊。然後,將該記憶體塊一分為二(一塊的大小與使用者請求的大小相等,另一塊的大小就是剩下的位元組)。接下來,將分配給使用者的那塊記憶體傳給使用者,並將剩下的那塊(如果有的話)返回到連線表上。呼叫free函式時,它將使用者釋放的記憶體塊連線到空閒鏈上。到最後,空閒鏈會被切成很多的小記憶體片段,如果這時使用者申請一個大的記憶體片段,那麼空閒鏈上可能沒有可以滿足使用者要求的片段了。於是,malloc函式請求延時,並開始在空閒鏈上翻箱倒櫃地檢查各記憶體片段,對它們進行整理,將相鄰的小空閒塊合併成較大的記憶體塊。

malloc()在作業系統中的實現

在 C 程式中,多次使用malloc () 和 free()。不過,您可能沒有用一些時間去思考它們在您的作業系統中是如何實現的。本節將向您展示 malloc 和 free 的一個最簡化實現的程式碼,來幫助說明管理記憶體時都涉及到了哪些事情。

在大部分作業系統中,記憶體分配由以下兩個簡單的函式來處理:

void *malloc (long numbytes):該函式負責分配 numbytes 大小的記憶體,並返回指向第一個位元組的指標。

void free(void *firstbyte):如果給定一個由先前的 malloc 返回的指標,那麼該函式會將分配的空間歸還給程序的“空閒空間”。

malloc_init 將是初始化記憶體分配程式的函式。它要完成以下三件事:將分配程式標識為已經初始化,找到系統中最後一個有效記憶體地址,然後建立起指向我們管理的記憶體的指標。這三個變數都是全域性變數:

//清單 1. 我們的簡單分配程式的全域性變數

如前所述,被對映的記憶體的邊界(最後一個有效地址)常被稱為系統中斷點或者 當前中斷點。在很多 UNIX?系統中,為了指出當前系統中斷點,必須使用 sbrk(0) 函式。 sbrk根據引數中給出的位元組數移動當前系統中斷點,然後返回新的系統中斷點。使用引數 0 只是返回當前中斷點。這裡是我們的 malloc初始化程式碼,它將找到當前中斷點並初始化我們的變數:

清單 2. 分配程式初始化函式

現在,為了完全地管理記憶體,我們需要能夠追蹤要分配和回收哪些記憶體。在對記憶體塊進行了 free呼叫之後,我們需要做的是諸如將它們標記為未被使用的等事情,並且,在呼叫 malloc 時,我們要能夠定位未被使用的記憶體塊。因此, malloc返回的每塊記憶體的起始處首先要有這個結構:

//清單 3. 記憶體控制塊結構定義

現在,您可能會認為當程式呼叫 malloc 時這會引發問題 ——它們如何知道這個結構?答案是它們不必知道;在返回指標之前,我們會將其移動到這個結構之後,把它隱藏起來。這使得返回的指標指向沒有用於任何其他用途的記憶體。那樣,從呼叫程式的角度來看,它們所得到的全部是空閒的、開放的記憶體。然後,當通過 free()將該指標傳遞回來時,我們只需要倒退幾個記憶體位元組就可以再次找到這個結構。

在討論分配記憶體之前,我們將先討論釋放,因為它更簡單。為了釋放記憶體,我們必須要做的惟一一件事情就是,獲得我們給出的指標,回退 sizeof(struct mem_control_block) 個位元組,並將其標記為可用的。這裡是對應的程式碼:

清單 4. 解除分配函式

這就是我們的記憶體管理器。現在,我們只需要構建它,並在程式中使用它即可.多次呼叫malloc()後空閒記憶體被切成很多的小記憶體片段,這就使得使用者在申請記憶體使用時,由於找不到足夠大的記憶體空間,malloc()需要進行記憶體整理,使得函式的效能越來越低。聰明的程式設計師通過總是分配大小為2的冪的記憶體塊,而最大限度地降低潛在的malloc效能喪失。也就是說,所分配的記憶體塊大小為4位元組、8位元組、16位元組、18446744073709551616位元組,等等。這樣做最大限度地減少了進入空閒鏈的怪異片段(各種尺寸的小片段都有)的數量。儘管看起來這好像浪費了空間,但也容易看出浪費的空間永遠不會超過50%